Graphing Motion: the 100m Sprint.

Name:
Aim: To record information on displacement and time for a sprinter running a 100 m sprint.
Equipment: Stopwatch, trundle wheel, chalk
Method: Set up 5 -metre intervals on a 100 m running track.
When the starter says "go", the timers start timing and the sprinter run towards the finish.
The timers stop their stopwatches when the sprinter runs past them.
Collect data for at least three sprinters. (If a bike is available you might like to collect data for a 100 m bike sprint as well.)

A	B	C	D	E	F	G	H	Eg. If 10m: 2.36s 15m: 3.24s Column F: Time For Each 5m Interval = $3.24 \mathrm{~s}-2.36 \mathrm{~s}=\mathbf{0 . 8 8 s}$ (it took 0.88 s to run from the 10 m mark to the 15 m mark)
Displacement (m)	Split Times (s)			Times for each five-meter interval (s) for Subject \qquad (1,2 , or 3)		Average Velocity during each 5m interval (m/s)	Midpoint Time (s) (from Columns B	
	Subject 1	Subject 2	Subject 3			$\mathrm{v}=\mathrm{x} / \mathrm{t}$ (ie. 5m/Column F)	(see note on right)	
0	0	0	0	-	-	0	0	Average velocity in each 5 m interval
5				0-5m				v x / t,
10				$5-10 \mathrm{~m}$				$\mathrm{v}=5 \mathrm{~m} / 0.88 \mathrm{~s}$
15				10-15m				$\mathrm{v}=\mathbf{5 . 6 8 m} / \mathrm{s}$ (the runner's average
20				$15-20 \mathrm{~m}$				velocity between the 10 m
25				$20-25 \mathrm{~m}$				mark and the 15 m mark was $5.68 \mathrm{~m} / \mathrm{s}$)
30				$25-30 \mathrm{~m}$				
35				$30-35 \mathrm{~m}$				Column H:
40				$35-40 \mathrm{~m}$				$\begin{aligned} & \text { Mid-point time } \\ & =(2.36 \mathrm{~s}+3.24 \mathrm{~s}) / 2=\mathbf{2 . 8 s} \end{aligned}$
45				$40-45 \mathrm{~m}$				The average velocity in each
50				45-50m				time interval is fairly close to the actual velocity half
55				$50-55 \mathrm{~m}$				way in time between the
60				$55-60 \mathrm{~m}$				start of the interval and the end of the time interval (the
65				$60-65 \mathrm{~m}$				mid-point time).
70				$65-70 \mathrm{~m}$				When we draw a velocity vs
75				$70-75 \mathrm{~m}$				that the average velocity of
80				$75-80 \mathrm{~m}$				$5.68 \mathrm{~m} / \mathrm{s}$ was the actual (or
85				$80-85 \mathrm{~m}$				the 2.8 s mark. This is only
90				$85-90 \mathrm{~m}$				an approximation, but it's
95				90-95m				the best we can do with the available data.
100				$95-100 \mathrm{~m}$				

Draw

- Displacement vs Time graphs (Column A vs Columns B, C, and D) for your three subjects on one set of axes with displacement on the y -axis and time on the x -axis. Draw a "line-of-best-fit".
- a Velocity vs Time graph (Column G vs Column H) for one of the subjects with velocity on the y-axis and time on the x -axis. (see the Column H note in the text box.) Draw a line-of-best-fit.

Q1. How far did each subject run in 1 second?
(i)
(ii)
(iii)

Q2. How far did each subject run in 2 seconds?
(i)
(ii)
(iii)

Q3. How far did each subject run in 3 seconds?
(i)
(ii)
(iii)

Q4. How much time did it take for each subject to run 8 metres?
(i)
(ii)
(iii)
(Note: the answers to Qs 5-7 below are not necessarily the same as the answers to Qs 1-3) Q5. How far did each subject run in the first second?
(i)
(ii)
(iii)

Q6. How far did each subject run in the second second?
(i)
(ii)
(iii)

Q7. How far did each subject run in the third second?
(i)
(ii)
(iii)

Q8. What do you notice about the distances in questions 5, 6 and 7 ?
Q9. How can you judge a runner's velocity from a Displacement vs Time graph? Q10. How did the runners' velocities change during their sprints?

